Particle transport

Factsheet 11: Microplastics in wastewater treatment - Development of sampling and analysis methods for detection of input quantities into surface waters

It is not easy to determine how much microplastic is contained in wastewater and sewage sludge. In addition to plastic, countless other particles and substances are present. To reliably determine the concentration of microplastic particles, complex procedures for sampling as well as for removal of foreign substances and analysis of the microplastic particles are required.

Factsheet 7.2: Microplastics in the aquatic food web - Impact and transfer analysis based on the example of roundworms (nematodes)

"To assess the ecologic danger posed by microplastics, one must also consider indirect effects in the food web", say Sebastian Höss (Ecossa) and Marie-Theres Rauchschwalbe (Bielefeld University). The researchers from the joint project MikroPlaTaS looked at these effects using nematodes as an example.

Factsheet 7.1: Microplastics around dams - How do plastic particles behave in reservoirs?

Plastic is now ubiquitous not only in the sea but also in many inland waters. In certain areas, such as at barrages or in dams, the flow velocity decreases. As a result, the particles previously held in suspension by the current begin to sink to the bottom of the water and can then accumulate in the sediment.

Factsheet 2: Valuable waste plastic - Floating recycling plant recovers plastics before they enter the sea

In this factsheet, joint project KuWert shows how plastic recycling can be profitable. The research team developed a floating recycling platform, mobile and independent of local structures. The system was tested in coastal cities in West Africa, where a lot of plastic ends up in the sea.

MicroCatch_Balt

Investigation of Sinks and Sources of Microplastics from a Typical Catchment Area to the Open Baltic Sea
August 2017
April 2021

This project determined sources and sinks of microplastic in the Warnow river basin, as well as relevant dissemination processes on its way to the open Baltic Sea. Separate models were linked so that the resulting model covers the entire river basin including estuary and coastal waters.

PLAWES

Microplastic Contamination in the Weser- Wadden Sea – National Park Model System: an Ecosystem-Wide Approach
September 2017
April 2021

In PLAWES, the modelling system of the German national park Weser-Wadden Sea was the first large European river basin that was investigated in detail regarding its microplastic pollution.

MikroPlaTas

Microplastics in Dams and Reservoirs: Sedimentation, Spread, Effects
January 2018
September 2021

The spread of microplastics in rivers showed that along a given waterway there are sources as well as sinks. Thus, dams and reservoirs constitute important but until now hardly investigated parts of a water system that serve as examples for risk vs. usefulness of sedimentation of microplastics.

EmiStop

Identification of Industrial Plastic Emissions by Means of Innovative Detection Methods and Technology Development to Prevent the Input into the Environment via the Wastewater Pathway
January 2018
December 2020

This project systematically detected emissions of plastics into wastewater from relevant industries. Emissions levels were analysed along all points of the value chain (production, transport, processing, and cleaning of synthetic materials).

SubμTrack

Tracking of (Sub)Microplastics of Different Identities - Innovative Analysis Tools for Toxicological and Process-engineering Evaluation
September 2017
June 2021

The methods currently available for the analysis of microplastics in environmental matrices were primarily designed for particles in the size range of 1 μm to 5 mm. Smaller particles below 1 μm were hardly detected. However in contrast to larger particles, these are able to enter cells and have a higher potential for adsorption of pollutants due to their relatively larger surface.

RUSEKU

Representative Investigation Strategies for an Integrative System Approach to Specific Emissions of Plastics into the Environment
March 2018
March 2021

This project developed representative investigation methods and strategies for an integrative system understanding of relevant plastic entry paths into the environmental compartment water.

( top of page )( zum Seitenanfang )